

Development of System Software Technologies
for post-Peta Scale High Performance Computing

Overview
A single general programming language or framework that
covers all subjects will not be feasible for post petascale
supercomputing. The goal of this project is to apply
modern techniques for software engineering and theoretical
foundations of programming languages, such as software
modularization, to supercomputing. The progress in
software modularity techniques, for example, for web
applications is significant in this decade. By applying
these techniques, such as domain-specific languages, test
driven development, object/aspect orientation, and program
verification, backed by fundamental theory, the project
enables domain experts to develop frameworks optimized
for a specific computing platform and/or algorithms. The
project thereby improves the efficiency of software
development in super computing. The project also
collaborates with the ExaStencil project of SPPEXA and
shows that our technologies are effective in the domain of
stencil computing.

Platform for Domain-Specific Languages
Bytespresso [Chiba, et al., PPPJ’16] :
It improves the execution performance of a
program written in a domain-specific language
(DSL) embedded in Java on HPC machines. It supports
MPI and CUDA as the execution platform. A key idea
developed for Bytespresso is deep reification. It enables
the implementation of an embedded DSL to extract code
fragments embedded in a host Java program and translate

on-the-fly to a program written in a language that
efficiently runs on the target platform, such as MPI-C and
CUDA. An embedded DSL implemented with deep
reification is categorized into implicit deep embedding,
which we named, a good mixture of shallow embedding
and deep embedding. Such a DSL provides intuitive
algorithm expression like shallow embedding and achieves
good execution performance like deep embedding.

Ikra [Springer and Masuhara, ARRAY’16]
It is a DSL that enables GPU-based array
processing in Ruby. It provides an extended
Array class, which is executed by the Ruby
interpreter with native compiled code for array processing.
Ikra’s challenges are generalization of application-specific
optimizations: supporting a wide range of parallel
architectures and combining various optimization tech-
niques such as communication/computation overlapping
and temporal blocking. Ikra addresses these challenges
by parameterized templates, which is unique against related
systems based on brute-force implementations or post-
processing. The methods currently supported by Ikra are
map, reduce, and stencil kernels. The optimizations such
as loop peeling, communication/computation overlapping,
and shuffling warps are supported. The performance of
Ikra programs is close to that of hand-written code and it
scales up to three GPUs.

Software Development Environments for Super Computing in Post-petascale Era

Vector Matrix library for MPI

¡ NPB 3.3 CG benchmark
public double conj_grad(Vector x, Vector z, Matrix.Sparse a,

Vector p, Vector q, Vector r, double rnorm)
{

q.set(0.0); z.set(0.0); r.set(x); p.set(r);
double rho = r.norm();
for (int cgit = 1; cgit <= cgitmax; cgit++) {

q.setToMult(a, p);
double d = inner(p, q);
double alpha = rho / d;
z.setToAdd(z, alpha, p);
r.setToAdd(r, -alpha, q);
double rho0 = rho;
rho = r.norm();
double beta = rho / rho0;
p.setToAdd(r, beta, p);

}
r.setToMult(a, z);
r.setToSub(x, r);
double sum = r.norm();
return Util.sqrt(sum);

}

Fortran 1800 LOC
Bytespresso 750 LOC

Comments included.

0 200 400 600 800 1000 1200 1400

4	x	8

8	x	8

16	x	8

32	x	8

64	x	8

NAS	Parallel	Benchmarks

CG-C/Bytespresso CG-C/Fortran LU-C/Bytespresso

LU-C/Fortran LU-D/Bytespresso LU-D/Fortran

of MPI procs
(8 procs per node)

GFlops

gcc 4.8.5 -Ofast with OpenMPI on TSUBAME 3.0

Development of System Software Technologies
for post-Peta Scale High Performance Computing

Verification of HPC Code
Vericuda [Kojima, et al., APLAS’13, VSTTE’16]
It can automatically verify, for example, an
optimized matrix multiplication program
written in CUDA. This verifier exploits
Hoare logic. For automatic verification, the programmers
have only to annotate loop invariants. Then Vericuda
verifies that, if the given precondition is satisfied, then the
post condition is also satisfied after the program execution.
Vericuda is useful to discover a bug that have been sneaked
while the programmers are modifying their programs for
performance optimization.

HPCUnit [Sato et al., ISSTA’15]
It supports runtime verification, or a unit test
for scientific-computing. It tests calculation
coverage to detect duplication, leak, and out-of-order
calculation bugs produced during performance
optimization. A Java program using MPI can be tested by
this tool. We found a duplication bug in Java Grande
Benchmark suites.

Exploring new application domains
We applied HPC to software repositories
mining. Nowadays, a large number of
programs are publicly available on the
internet. Those programs are actively investigated by
researchers for discovering new software-engineering
insights. This investigation is called mining software
repositories. However, since the total size of the
programs is huge, the computation time for the
investigation has been a major obstacle to discover an
interesting insight. We used a supercomputer to perform
the mining. We could
successfully execute
the Type-3 code clone
detection among the
Apache 131 projects
except a few extremely
large source files.

Our software systems that are publicly available:
Bytespresso
A development framework for Java-based embedded DSLs. https://github.com/csg-tokyo/bytespresso
Ikra
An embedded DSL (or a library) for array processing in Ruby by using GPUs.
https://rubygems.org/gems/ikra
VeriCUDA
A static verification system for CUDA programs on the basis of Hoare logic.
https://github.com/SoftwareFoundationGroupAtKyotoU/Vericuda

Project information:
Project leader: Shigeru Chiba (Univ. of Tokyo)
Project member: Hidehiko Masuhara (Tokyo
Tech), Atsushi Igrashi (Kyoto Univ.), and Naoyasu
Ubayashi (Kyusyu Univ.)
Contact:
Shigeru Chiba, chiba@acm.org

Example: 3D diffusion in Ikra

while time + 0.5*dt < 0.1
f1 = f1.stencil(27).map{ |e|

cc * e[0,0,0] + cw * e[0, 0,-1] + ce * e[0, 0,1] +
cs * e[0,1,0] + cn * e[0,-1, 0] + cb * e[-1,0,0] +
ct * e[1,0,0]

}
time += dt
count += 1

end

compatible API
with Ruby's Array

neighbors of
f1's elements

generates an array
of neighbors

���������������� ���
!����������������

���!

�! �!

requires { N >= 0 }
ensures { sum = N*(N-1)/2 }
sum = 0;
for (int i = 1; i < N; i++) {

invariant { sum = i*(i-1)/2
}

sum += i;
}

����
��������� ��������� ���
����� �����������������!���

�����������"��
�	�����"���

�����������

�������"�����

��� ����� ���

�������� ���

