
Software Technology that Deals with
Deeper Memory Hierarchy

in Post-petascale Era

PI: Toshio Endo (Tokyo Tech)
Co-PI: Hiroko Midorikawa (Seikei Univ)

Yukinori Sato (Tokyo Tect)

1

Motivation: Memory Wall Problem
in Post-Peta Era

• HPC community is going to Post-peta/Exascale era
• “Memory wall problem” introduces trade-off among “Flop/s”,

“Byte/s” and “Byte”(problem size)

0.01
0.1

1
10

100
GFlop/s/W

GByte/WGByte/s/W
generic mem-rich
mem-reduced comp-rich

Possible architecture parameters
around 2022 How can we reach (virtually)

EFlop/s, EByte/s and EByte
simultaneously?

Realizing
Extreme Fast&Big Simulations

MemoryCREST: Overview

HMC, HBM
O(GB/s) Flash

PCM, STT-MRAM…NVDIMM

Algorithms with
locality improvement

System software for
mem hierarchy mgmt

＋

＋

HPC Architecture with
hybrid memory devices

Co-design

Memory
Profiling

Goal: To achieve extremely high-speed&large
simulations by the co-design approach

4

Algorithm layer
• Stencil kernels w/ temporal blocking

Algorithms with
locality improvement

System software for
mem hierarchy mgmt

＋

＋

HPC Architecture with
hybrid memory devices

Memory
Profiling

Stencil Computations
Important kernels for various simulations: CFD, Materials…

Figures by Prof. T. Aoki (Tokyo Tech)

Naïve implementations lacks memory access locality
 How can we harness memory hierarchy for fast&large
simulations?

Locality Improvement in GPGPU Stencils
[IEEE Cluster 13]

Blocking/tiling techniques are good, but “spatial” blocking is still
insufficient
⇒ Temporal blocking (TB) is a key technology [Wolf 91] [Datta 08]…

Step 1 Step 2 Step 3 Step 4

Simulated time

w/ Temporal blocking (3 steps)
Step 1 Step 2 Step 3 Step 4

Optimized temporal blocking

• TB is originally for cache usage improvement. We adopted it to exceed GPU
memory capacity

Endo

With optimized TB, 20x larger
domain size is successfully
computed with very little overhead

6GB (GPU mem size) → 125GB

7P-stencil on a K20X GPU

6

7

Horizontal and Vertical Memory Extensions
for Large Data Applications

An Out-of-core Stencil Algorithm using Cache, DRAM, and Flash SSDs

Large Problem Size beyond the Total Capacity of DRAM of Nodes in a Cluster
Maximum Problem Size = Local SSD Capacity x Num of Nodes

Tsubame3 : 1TiB-array/Node
(28-core, 120GiB-DRAM, 1.9TB-SSD)

Midori

Spatial and temporal block sizes and shape for each memory layer are automatically
determined. They are used as the parameters of stencil programs in the backend.

Just-in-Time Automatic Blocking Size Setting to increase data access locality
for Flash-based Stencil Computing

In runtime, the Blk-Tune selects the optimal set of spatial and temporal blocking sizes
for given platforms and problem parameters to minimize the amount of I/O traffic to Flash

Advantages
・No preliminary program
executions to gather information
using various parameter
combinations, which are common
in ordinary auto-tune systems.
・More dynamic than compiler-
based tuning systems that use
only static information of
programs without any input
parameters or platform
information.

8

Blk-Tune

Runtime-retrieving platform information
・Flash device capacity, Flash device block size,
・DRAM size, L2, L3 cache size
・# of Cores, # of sockets

The global-minimum
search algorithm

Input only domain size, Time steps, Flash device path
./stencil7p -n 4094 4096 2048 -t 1000 -d /dev/sdc13

Midori

Towards Automatic Temporal Blocking
by Extending Polly/LLVM [LLVM-HPC’17]

• Temporal blocking is expressed as loop transformation
 in order to reduce programming costs, polyhedral compilers are promising

– Pluto, Polly on LLVM

9

trapezoid
t

x

wavefront
t

x

But … temporal blocking introduces
“skewed” block shapes, which are not

supported in all those compilers
We extended Polly/LLVM!

Our new tool creates a loop scheduling that expresses TB. 1D 3Point case is:
[n, timestep] -> { S1[t, x] -> [T, 0, bx, t, 0, x] : (T % 13 = 0 and T <= t < T + 13 and ((x + (1 * (12 – (t - T)))) % 624 < 312 +
2 * (1 * (12 - (i0 - T))) and bx = floor((x + (1 * (12 - (t - T)))) / 624))) and 2*floor((t)/2) = t and 2 <= t < timestep ;

S1[t, x] -> [T, 1, bx, t, 0, x] : (T % 13 = 0 and T <= t < T + 13 and ((x + (1 * (12 - (t - T)))) % 624 >= 312 + 2 * (1 * (12 -
(t - T))) and bx = floor((x + (1 * (12 - (t - T)))) / 624))) and 2*floor((t)/2) = t and 2 <= t < timestep}

• codes with TB are successfully
generated

• Similar performance with hand-
tuned code

Future: Transforming real apps!!

Performance of 2D 5point Stencil

w/ Matsuoka Lab

Endo

Sato

11

PATT: Polyhedral compilation based AuTo Tile size optimizer
Loop tiling size selection is still a open problem
because it depends on application’s memory
access patterns and the underlying hierarchical
memories on each platform

Performance widely varies with loop tile size

PATT (Polyhedral compilation based AuTo Tile size optimizer):
Automate tiling using open source Polyhedral compiler and
search the optimal parameters for tile size coupling with
autotuning technique

0.0

1.0

2.0

3.0

4.0

Sp
ee

du
p

fr
om

 b
as

el
in

e

NoTiling s-PATT i-PATT

Baseline=all32

It can achieve in average 1.4 times to 2.3 times speedup without the
case of no tile size consideration (32x32x32, Polly’s default tile size)

As a preliminary evaluation on many core CPUs (KNL), we
observed the performance degradation due to scalability issues

We propose an autotuning mechanism capable of load
balancing among threads running on a many core CPU

Transparent performance tuning on ExanaDBT
ExanaDBT: A dynamic binary optimizer based on Polyhedral model

 It transparently optimizes executable binary code at runtime
 Implemented based on LLVM compiler toolchains
 Just connecting these tools, polyhedral optimizer always failed due to the

structural gaps among x86 ISA and LLVM IR
 We investigate the reasons behind them and attempt to perform transparent

polyhedral optimization including loop tiling, vectorization and parallelization

We have developed a toolchain that lifts up the binaries to the one capable of
polyhedral optimization

 From the results, we find that ExanaDBT successfully performs dynamic optimization
 It contribute to 3.2x in 1-thread and 11.9x speedup in 16-thread execution in

average from unoptimized serial code.
[CF’17] Yukinori Sato, Tomoya Yuki and Toshio Endo, "ExanaDBT: A Dynamic Compilation System for Transparent Polyhedral
Optimizations at Runtime", ACM International Conference on Computing Frontiers 2017. 10 pages.

Sato

12

12

Exana series

Algorithms with
locality improvement

System software for
mem hierarchy mgmt

＋

＋

HPC Architecture with
hybrid memory devices

Memory
Profiling

Our toolchain for performance tuning Sato

16

Memory locality analysis using Exana tool

How to use：
% Exana [option] -- ./a.out Outputs are exana.out and

result files for each analysis

Yukinori Sato, Shimpei Sato and Toshio Endo. Exana: An Execution-driven Application Analysis Tool for
Assisting Productive Performance Tuning. The Second Workshop on Software Engineering for Parallel Systems
(SEPS), co-located with SPLASH 2015.

Options Result file

Loop-call nest detection
[CF’11]

-mode LCCT lcct.dat

Memory dependence
analysis [IISWC’12]

-mode LCCT+M lcctm.dat

Memory access pattern
analysis [WANC’14]

-mempat 1 mempat.dat

Cache-line conflict
simulator [EuroPar’17]

-cacheSim 1 cacheSim.dat

Working set analysis
[SEPS’15]

-workingSetAna 1 lcct.dat

Put options before target application’s command

Run on various languages（C/C++, Fortran), compilers, MPI
runtimes, multithreaded code, binary with shared library,
process fork or recursions

Verified applications：
Real app to Riken MiniApp (Fiber)

A result for NICAM-DC

For MPI programs
% mpirun –np 16 Exana –cacheSim 1 -- ./openmx Methane.dat

Exana: A memory locality profiler for
assisting performance tuning

Sato

17

Custom HPC TSUBAME 3.0
Custom HPC SGI Altix UV
Custom HPC Cray XC30
Accelerators Xeon Phi (KNC, KNL)

Generic x86 Linux (CentOS)

Verification for Exana tool set

Exana-C2Sim: A cache-line conflict detector and
its application to performance tuning

[EuroPar’17] Yukinori Sato and Toshio Endo. An Accurate Simulator of Cache-line Conflicts to Exploit the Underlying
Cache Performance. The 22nd International Conference on Parallel and Distributed Computing, Euro-Par 2017.

We develop a special cache simulator for diagnosing occurrences
of conflict misses and a simple workflow to get rid of them

• Concurrent dual cache simulation: Detecting conflict
misses using both of the ideal Fully Associative cache and
the actual Set Associative cache

• Reasoning mechanism: Revealing the source of conflict
misses together with memory-object relative profiling

• Advanced cache modeling： Modeling slice structures in
L3 cache and physical address translation

Our mechanism

Ratio of cache conflicts and their source of occurrences
We can detect memory object

level locations of conflicts

Also, we can link them to the
locations in source code

We can classify the sources into
intra-array or inter-array

Code tuning strategy for avoiding cache conflicts

Tuning strategy When
Opt.1 Intra-array padding insertion To resolve intra-array conflicts
Opt.2 Use of hugetlbfs (2MB page) To resolve conflicts in L2/L3 cache
Opt.3 Inter-array padding insertion To resolve inter-array conflicts

Sato

18
Effects of advanced cache modeling

Max abs error of simple VA cache is 48%

Max abs error becomes 5%

16

System software/Middleware
• HHRT (GPU⇔Host⇔SSD)
• mDLM
• mSMS
• vGASNet

Algorithms with
locality improvement

System software for
mem hierarchy mgmt

＋

＋

HPC Architecture with
hybrid memory devices

Memory
Profiling

HHRT for CUDA/MPI Apps
[Cluster ‘14]

17

• Execution model：Several (n) MPI processes share a single GPU
• m, # of processes that can run simultaneously, is smaller than n

– Swapping is done per process (not per page)
• Process’s data are swapped out to lower memory (host memory or Flash SSD)

HHRT does swapping, but does not locality improvement
 Programmers still need to implement locality improvement

– Hybrid Hierarchical RunTime: A wrapper library for MPI + CUDA
• It provides data swapping facility in memory hierarchy Expands data

size visible to applications
• github.com/toshioendo/hhrt

Endo

Node Device memory

Lower memoryProcess’s data

w/o HHRT (typically)

MPI commcudaMemcpy

With HHRT
Node Device memory

Lower memoryProcess’s data

MPI comm

Expanding Domain Sizes of Real-World
Stencil Applications [IEEE ICPADS ‘15]

18

Fast &Large simulations are
achieved by the co-design approach!
• GPU device memory (fast but small)

and host memory (large but slow) are
automatically harnessed on top of
HHRT middleware

• TBD: We see still overhead with large
domains

0

20

40

60

80

0 6 12 18 24 30 36 42 48 54

Sp
ee

d
(G

Fl
op

s)

Problem Size (GB)

NORMAL HH HH_TB

HHTB_MPI HHTBMPI_OPT CPU

TSUBAME2.5 1GPU (K20X)

Fa
st

er Bigger

A city wind simulator based on Lattice-
Boltzmann method
by Onodera, Aoki
• A stencil application written in MPI+CUDA
• The simulation domains are allocated on

GPU memory

Endo
w/ MaruyamaT

Harnessing 3-Tier memory on HHRT:
GPU⇔Host⇔SSD [Cluster ‘16]

19

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250 300
Sp

ee
d

(G
Fl

op
s)

Problem Size (GiB)

Orig NoTB+HHRT(2014) TB+HHRT(2014)

TB+HHRT(2016) TB+HHRT(2017)

7p Stencil w/ TB on K40 1GPU Bigger

Fa
st

er

G
PU

 m
em

ory capacity

Host m
em

ory capcity

20x larger stencil domains can be computed
TBD: ~50% overhead with >64GB should be mitigated

Endo

GPU mem
12GB

Host memory 64GB

L2$
1.5MB

GPU
cores

250GB/s

PCIe
8GB/s

GPU card

CPU
cores

L3$

NVMe SSD 512GB

1.5GB/s

mDLM (Distributed Large Memory)
User-level remote memory paging for multi-thread programs

Programming Interface for mDLM

Page-Swap Protocol in mDLM

20

100% local memory 25%: local memory
75%: remote memory

7-point temporal-blocking Stencil
Computing

(128GiB mem/node, problem size : 64GiB – 512GiB)

19%
better perf.

in new
protocol

(r77)

23% degradation

Midori

mSMS (Distributed Shared Memory)
for multi-node & multi-thread parallel programs

21

Programming Interface for mSMS

7-point Simple Spatial-blocking
Stencil Computing

(128GiB data/node, 16-thread/node, 2 – 72 nodes
double precision, problem size : 256GiB – 9.2TiB)

Communications in mSMS system threads Preliminary experiments in Tsubame3

Large size problems can be easily
implemented and executed on a

cluster with highly productive
programming environment

9.2 TiB-problem on 72 nodes achieves 892
GFlops, which is expected more

when using a temporal-blocking algorithm

Midori

22

• Feedback to design of TSUBAME3
supercomputer

Algorithms with
locality improvement

System software for
mem hierarchy mgmt

＋

＋

HPC Architecture with
hybrid memory devices

Memory
Profiling

Feedback of Results of Projects
to New Supercomputer, TSUBAME3.0

• Operation of Tokyo Tech TSUBAME3.0 started
in Aug 2017
– 12 PFlops (DP) computation, 16PByte storage
– 3-Tier memory hierarchy is expected to realize

fast&large simulations

23

Endo

A TSUBAME3ノード
• Computation: 22TFlops

• 4 P100 GPU, 2 Broadwell CPUs
• Memory Hierarchy

• GPU: 16GB×4, 0.7TB/s×4
• Host: 256GB, 154GB/s
• NVMe SSD: 2TB, 2.6GB/s

Events

24

• Sep 17, 2014: 1st Memory Plus Workshop
– 7 Invited talks, ~80 participants

• Aug 31, 2016: 2nd Memory Plus Workshop
– Invited talks from Intel, NVIDIA, Toshiba. ~45 participants

Summary
Towards Extreme Big Simulations
• Architecture: Hierarchical Hybrid memory
• System software: Reducing programming cost
• App. Algorithm: Reducing communication

25

System Software
For Mem Hierarchy

Co-design
is the key

	Software Technology that Deals with Deeper Memory Hierarchy �in Post-petascale Era
	Motivation: Memory Wall Problem �in Post-Peta Era
	MemoryCREST: Overview
	スライド番号 4
	Stencil Computations
	Locality Improvement in GPGPU Stencils�[IEEE Cluster 13]
	スライド番号 7
	�Just-in-Time Automatic Blocking Size Setting to increase data access locality for Flash-based Stencil Computing�
	Towards Automatic Temporal Blocking�by Extending Polly/LLVM [LLVM-HPC’17]
	スライド番号 10
	Transparent performance tuning on ExanaDBT
	スライド番号 12
	Our toolchain for performance tuning
	Memory locality analysis using Exana tool
	Exana-C2Sim: A cache-line conflict detector and its application to performance tuning
	スライド番号 16
	HHRT for CUDA/MPI Apps�[Cluster ‘14]
	Expanding Domain Sizes of Real-World Stencil Applications [IEEE ICPADS ‘15]
	Harnessing 3-Tier memory on HHRT:�GPU⇔Host⇔SSD [Cluster ‘16]
	mDLM (Distributed Large Memory) �User-level remote memory paging for multi-thread programs
	mSMS (Distributed Shared Memory)�for multi-node & multi-thread parallel programs
	スライド番号 22
	Feedback of Results of Projects�to New Supercomputer, TSUBAME3.0
	Events
	Summary

