

Development of System Software Technologies
for post-Peta Scale High Performance Computing

Overview

High-performance computing (HPC) system architectures

are revolutionarily becoming larger and more heterogeneous.

Meanwhile, it is not affordable to rewrite each application for

every new system. This Xevolver project takes an

evolutionary approach to incremental migration of existing

software resources to new systems. The goal of this project is

to establish an effective migration path to new algorithms,

implementation schemes, and programming environments for

massively-parallel and heterogeneous systems in an upcoming

extreme scale computing era.

Separation of System-Awareness
HPC system architectures are getting more complicated and

diversified. Due to the complexity, it becomes harder and

harder to exploit the full potential of a particular system

without performance optimizations specific to the system.

That is, an application code must be thoroughly optimized and

specialized for a specific platform to achieve high

performance. The diversity of system architectures increases

the number of system architectures that have to be considered

during the life of an application. Accordingly, increases in

system complexity and diversity would force programmers to

further invest enormous time and effort for HPC application

development and maintenance. To overcome this difficulty,

we are developing an extensible code transformation

framework, Xevolver, so that users can define their own code

transformation rules for special demands of individual

systems and individual applications. As a result, users can

express the information about system-specific performance

optimizations separately from application codes and thereby

facilitate HPC application migration in the future.

Xevolver Framework
In practice, there are repetitive patterns in the code

modifications, and hence we can assume that those code

modifications could be replaced with a smaller number of

code transformations. Under this assumption, we are

developing Xevolver to enable users to express their own code

optimizations for special demands of individual systems and

individual applications. Instead of simply modifying a code by

hand, users can easily define custom code transformations to

optimize and specialize an application code for a particular

system. In Xevolver, such code transformation rules can be

defined separately from an application code. Accordingly,

Xevolver enables to express system-specific and/or

application-specific code optimizations separately from

application codes.

To define a user-defined code transformation rule, what users

have to do is to simply write two version of a code, or a code

pattern; the original version and its transformed version. Then,

System revolution and software evolution Code transformation rule generation.

An Evolutionary Approach to Construction of a Software Development Environment for Massively Parallel Heterogeneous Systems

K20X GPU

User-defined code transformation

Development of System Software Technologies
for post-Peta Scale High Performance Computing

one of our tools named Xevtgen generates a machine-usable

code transformation rule from such a simple description about

the code transformation. Therefore, users do not need to care

about any special knowledge internally required for

implementing their code transformations.

Hierarchical abstraction of HPC systems
We do not claim that everything for performance optimization

should be expressed as user-defined code transformations.

Rather, our claim is that appropriate abstractions should be

used for appropriate purposes. User-defined code

transformations should be used to express code modifications

that are unavoidable even if all the abstractions are properly

used.

Abstraction technologies such as numerical libraries are

strongly required to hide complicated system configurations

from application developers. We are developing numerical

libraries to hierarchically abstract HPC system configurations.

Our numerical libraries are optimized for multiple platforms,

such as GPU, MIC, and CPU cluster systems, so that

application developers can use different implementations with

common interfaces, resulting in high performance portability.

The numerical libraries are designed to support as many data

structures as possible to cover various use cases while

achieving high performance. We also investigate auto-tuning

technologies to adapt the optimized implementations of

numerical libraries to similar platforms in order to achieve

high performance portability.

HPC refactoring catalog
 In this project, we are cataloging expert knowledge and

experiences about code optimizations as the HPC refactoring

catalog. The HPC refactoring catalog is open to the public

(https://one.sc.cc.tohoku.ac.jp/hpcref/) so that programmers

can share and reuse the knowledge and experiences.

Description about the code optimization, code examples, and

performance evaluation results are provided in the catalog,

and code transformation rules are also provided for some

important code optimization techniques.

Hierarchical abstraction of system

configuration.

Project information:

Project leader: Hiroyuki Takizawa (Tohoku Univ.)

Project member:

Reiji Suda (Univ. Tokyo),

Daisuke Takahashi (Univ. Tsukuba),

Ryusuke Egawa (Tohoku Univ.)

Contact: takizawa@tohoku.ac.jp

Xevolver: XML-based AST transformation framework.

C/Fortran programs are converted to their ASTs in XML, and exposed to programmers for AST transformations. The

transformed ASTs are converted back to C/Fortran programs.

Xevparser/Xevtgen: Tools for generating code transformation rules.

A code transformation rule in XSLT is generated from a simple rule template written in Fortran.

autoOMP: Automatic OpenMP insertion tool.

OpenMP directives are automatically inserted based on compiler’s optimization messages.

Xev-GMP: Automatic code generation of GMP multiple-precision code from C code.

FFTE: A fast Fourier transform package for GPU clusters.

AMGS: An algebraic multigrid library.

FXTPACK: Fast orthogonal function transform library.

PACC: A directive-based programming framework for accelerating large-scale stencil computation.

All the software packages are available at http://xev.sc.cc.tohoku.ac.jp.

